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Abstract: Motivated by the need for governments to partner with local farmers so that modern 
irrigation channels can be constructed to avoid losses from drought, we model the irrigation 
system provision problem as a threshold public goods game of loss avoidance and focus on 
testing whether government subsidies, as a type of price-based intervention, increase rate of 
successful provision. We design an experiment with scenarios involving either high or low risk 
of loss, while the local government provides either no subsidy, a one-to-one matching subsidy or 
a lump-sum subsidy. Results show that with no subsidy, the rate of provision of the public good 
is below the social optimum, and this is especially the case under high risk. Subsidies 
substantially increase the likelihood the irrigation project is undertaken, though groups remain 
under-insured in relation to the social optimum. A one-to-one matching subsidy appears to be at 
least as effective as lump-sum grants under same budget, although the improvement in average 
group investment and success rates is not significant. 
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1 Introduction 

The increasing frequency of extreme weather events has imposed new challenges to small 
farmers, especially in developing countries (World Bank, 2007). One example is the dominating 
small-scale irrigated agriculture, which is highly vulnerable to drought (Morton, 2007; Fleischer, 
Lichtman, & Mendelsohn, 2008; Wheeler & Von Braun, 2013). Many small-scale irrigation 
systems are self-governed shared resources and largely rely on farmers’ ability to solve 
collective action problems and willingness to cooperate on the provision and maintenance of 
these public goods (Ostrom, 2015). However, with more opportunities outside of agriculture, 
farmers have a low incentive to contribute to these public goods (Cardenas et al., 2017). 

In this paper, we model the local irrigation system provision problem as a threshold public goods 
game of collective risk avoidance. We aim to find efficient ways for governments to partner with 
the local farmers so that modern irrigation channels can be constructed to avoid losses from 
drought. Using a laboratory experiment, we explore how people make decisions in this 
environment to collectively insure against possible common future loss and whether different 
types of government subsidies, as a type of price-based intervention, increase rate of successful 
provision under various levels of risk of drought. 

Milinski et al. (2008) first model prevention of climate change as a type of collective-risk social 
dilemma where the group needs to reach a collective target through individual contributions; 
otherwise everyone suffers individually. Experimental results suggest considerable inefficiency 
in providing such goods: the success rate of reaching the threshold is between 20-70 percent 
(Milinski et al., 2008; Tavoni, Dannenberg, Kallis, & Löschel, 2011), which is consistent with 
success rates typically seen in standard threshold public goods games (Croson and Marks, 2000; 
Alberti and Cartwright, 2015; Cartwright and Stepanova, 2015). 

Theoretical and experimental research on this topic has found that people are more likely to 
reach the target sum under high risk of dangerous climate change than low risk (Milinski et al., 
2008), that inequality in endowment reduces success and communication increases success 
(Tavoni et al., 2011) and that homophily (imitation of like agents) leads to cooperation collapse 
because poor agents may contribute less, and thus resolution of the climate change policy 
problem stems from the rich compensating for the smaller contribution by the poor 
(Vasconcelos, Santos, Pacheco, & Levin, 2014). Another reason that cooperation fails in 
provision of climate public goods is the uncertainty of thresholds (Barrett, 2013). The negative 
effect of threshold uncertainty is particularly severe when it takes the form of ambiguity, i.e. 
when players are not only unaware of the value of the threshold, but also of its probability 
distribution (Dannenberg et al., 2015). 

Researchers have explored different institutions to improve efficiency in standard threshold 
public goods games. Examples include providing a refund when the threshold is not met (Cadsby 
and Maynes, 1999; Cartwright and Stepanova, 2015), adopting a sequential contribution 
mechanism (Coats, Gronberg and Grosskopf, 2009), requiring a full agreement (Alberti and 
Cartwright, 2016), employing a punishment mechanism to eliminate all but one of the provision-
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point equilibria (Andreoni and Gee, 2015) and allowing pre-play communication (Feltovich and 
Grossman, 2015; Palfrey, Rosenthal and Roy, 2017). 

The institution we focus on here is a price-based intervention: government subsidies. Ostrom and 
Gardner (1993) note that historically, people believe that an external, central government is 
necessary to supply and organize forms of collective actions like providing irrigation works 
because common-pool resources will be underprovided and overused without effective 
institutions. In many parts of the developing world, national governments were perceived as the 
“owner” of all natural resources (Sawyer, 1992) and could provide considerable technical 
expertise, so they are the only agency that should or could invest in constructing and managing 
irrigation systems. As a result, large-scale governmental bureaus were established to build 
irrigation systems during the colonial period in many parts of Asia and Africa. From the 1950s 
through the 1970s, to reduce governments’ expenditures on irrigation, improve productivity and 
stabilize deteriorating irrigation systems, efforts to transfer irrigation management from the 
government to farmer groups or private organizations occurred in the USA, France and 
Colombia, which later also became a national strategy in most developing countries in Asia, 
Africa and Latin America during the 1980s or 1990s (Vermillion, 1997).1 We thus view using 
government subsidies as a way to reconcile historical beliefs and recent practice in establishing 
public-private partnerships. In fact, government subsidies often continue in both developed and 
less developed countries often due to the political clout of farmers (Merrey, 1996; Vermillion, 
1997).  

Specifically, the local government will subsidize contributions by individuals under a certain 
budget, which essentially decreases the effective threshold relative to the original one. Croson 
and Marks (2000) show that a higher Step Return, defined as the ratio of the private value of the 
public good to the threshold, leads to more contributions. We thus expect providing subsidies 
would improve efficiency. Note that the government subsidy here is not paid for by lump sum 
taxes on contributors, and thus is not subject to the crowding-out effect typically documented in 
the public finance literature that givers, who are also taxpayers, will use their tax-financed 
donations as a substitute for their voluntary donations (Warr, 1982; Bernheim, 1986; Andreoni 
and Bergstrom, 1996; Payne, 2009). These subsidies are instead similar to leadership gifts in 
charitable fundraising that come from large donors (e.g. loan from development banks or tax 
revenue from the central government) other than the smaller donors the campaigns mainly target 
(in this case local farmers). While leadership gifts partially crowd out actual donations, the total 
amount including the gifts raised still increases (Huck and Rasul, 2011; Gong and Grundy, 
2014).  

                                                 
1 Chile, Peru, Mexico, Brazil, the Dominican Republic, Colombia, Haiti, Senegal, Mauritania, Niger, Zimbabwe, 
Tanzania, Sudan, Somalia, Madagascar, Turkey, Pakistan, India, Sri Lanka, Bangladesh, Lao PDR, Vietnam, China, 
Indonesia, and the Philippines are among the developing countries implementing national transfer programs 
(Vermillion, 1997). 
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We consider two types of subsidies: a one-to-one matching and a lump-sum grant under a given 
budget. We use a 1:1 match ratio for simplicity.2 Research on these two schemes in charitable 
giving show mixed results. For example, Andreoni (1998) concludes that given a total budget the 
government can devote to the charity, it is best to spend it all as a direct lump-sum grant, while 
only when the government’s budget is large should it consider adding (matching) subsidies. 
Huck and Rasul (2011) also find that charities will maximize the donations they receive by 
treating leadership gifts as seed money as compared with using any linear matching schemes. 
Gond and Grundy (2014), on the other hand, find that appropriately designed matching schemes 
where the match ratio is chosen to reflect the characteristics of the small donor base so as to 
exhaust the large donor’s willingness to give always raise more money than seed money 
schemes. Although charitable fundraising is a type of private funding for public goods, to our 
knowledge there is no direct test on these two subsidy schemes in threshold public goods games. 

Milinski et al. (2008) and Cardenas et al. (2017) are the two papers most closely related to ours. 
Our design builds on the collective-risk social dilemma framework proposed by Milinski et al. 
(2008) where a group of players simultaneously decide how much out of their endowments to 
contribute to a group account, which prevents potential personal income loss if the group 
contribution reaches a certain threshold. Unlike a general framing of prevention of climate 
change in Milinski et al. (2008), we explicitly frame the threshold public goods game as funding 
for an irrigation system. In addition, Milinski et al. (2008) restrict the strategy space to three 
choices including “free rider”, “fair sharer” and “altruist”, while we allow continuous 
contributions. Cardenas et al. (2017) frame their public goods game as irrigation problems and 
collect data from smallholder farmers in rice-producing communities in four developing 
countries. Their irrigation experiment, however, is a standard linear public goods game and they 
aim to understand how private and collective risks affect farmers’ contributions. 

In our experiment, participants are told to imagine themselves as a group of farmers in a village, 
and the irrigation channels which protect their crops from income have decayed over time and 
can hardly be used anymore. In each round of the game, each player has an endowment (all or 
part of) which they can either invest to an irrigation renovation fund (IRF) for the group or keep 
as personal income from crops. The irrigation system requires a certain amount to be renovated. 
If the group investment in the IRF reaches the minimum required, the renovation project is 
undertaken and any extra amount invested will not be returned. If the minimum amount is not 
met, the channels will not be renovated and the farmers who invested will receive a full refund. 
After that, a drought occurs with a certain probability (either high or low depending on the 
treatment). When the renovated irrigation system is in place, crops are protected and players 
receive their full income after investment no matter whether a drought occurs. However, when 
the system has not been renovated, players lose all income and receive 0 if a drought occurs, or 
receive an income equal to the endowment if a drought does not occur. 

                                                 
2 Karlan and List (2007) run a large-scale natural field charitable giving experiment and find that the match offer 
increases both the revenue per solicitation and the response rate, but the specific match ratio has little impact. 
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We run six treatments under a 2-by-3 within subject design. One dimension of the experiment is 
the risk of drought, which can be either high (75%) or low (25%). The other dimension describes 
subsidy schemes, including no subsidy, a one-to-one matching subsidy and a lump-sum subsidy. 
After the public goods game, we also elicit participants’ risk preferences using an Eckel-
Grossman (2002) ordered lottery selection and collect survey responses. 

Results show that with no subsidy, provision rate is below social optimum under high risk; 
provision rate under low risk is very low, which can be socially efficient. Government subsidies 
substantially increase the likelihood the irrigation project is undertaken, while groups are still 
under-insured relative to social optimum. A one-to-one matching subsidy appears to be at least 
as effective as lump-sum grants, though the difference is not significant. 

Our paper contributes to the literature in the following ways. First, we model the irrigation 
system provision problem as a threshold public goods game of loss avoidance as in Milinski et 
al. (2008) and provide a formal theoretical framework along with its predictions. Second, we 
explore different government subsidy schemes on contributions under different risks of drought 
using an experiment framed as funding for an irrigation system. Our study thus yields important 
policy implications for public private partnerships (PPPs) in aiding development and creating 
sustainable environmental policies. 

 

2 Theoretical framework 

Milinski et al. (2008) frame prevention of climate change as a collective-risk social dilemma, i.e. 
a threshold public goods game of loss avoidance, where the group needs to reach a collective 
target through individual contributions; otherwise everyone suffers individually. In this section, 
we formally model this game in an irrigation system provision setting and solve for its equilibria 
under parameters that have different social optimum implications. 

2.1 The environment 

A group consists of N individuals. Each individual starts with an endowment of E and decides 
simultaneously and privately how much to contribute to the group account for the irrigation 
project and keep the rest as personal income. Continuous contributions to the group account are 
denoted as 𝑐𝑐𝑖𝑖 for individual i, where 0 ≤ 𝑐𝑐𝑖𝑖 ≤ 𝐸𝐸, i = 1,2, … , N. The threshold public good, the 
irrigation project, requires a cost of 𝑇𝑇 , where 𝐸𝐸 < 𝑇𝑇 < 𝑁𝑁𝐸𝐸 so that sole contribution from one 
individual is not adequate, but the threshold is certainly achievable given the group endowment. 
If the total group contribution is at least 𝑇𝑇, the irrigation system is built and the contributions that 
exceed 𝑇𝑇 are not returned (no rebate). If the total contribution is less than 𝑇𝑇, the irrigation system 
is not built and contributions are returned to their contributors and turn into personal incomes 
(full return). After that, with probability 𝑝𝑝 ∈ [0,1] a drought occurs, in which case individuals do 
not lose their personal incomes only if an irrigation system is in place. With probability 1 − 𝑝𝑝 no 
drought occurs and no one suffers from any loss. 
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Suppose each individual 𝑖𝑖 has a selfish and risk neutral utility function 𝑈𝑈𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑁𝑁. We 
further assume that individuals do not receive direct utility or disutility from making a 
contribution, possessing an irrigation system or suffering from a drought, but rather only care 
about their final personal incomes. More specifically, utility takes the following form: 

𝑈𝑈𝑖𝑖 = 𝐸𝐸 − 𝑐𝑐𝑖𝑖    if    ∑ 𝑐𝑐𝑖𝑖 ≥ 𝑇𝑇𝑁𝑁
𝑖𝑖=1  (1) 

𝑈𝑈𝑖𝑖 = �0,                𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.  𝑝𝑝 
𝐸𝐸,         𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.  1 − 𝑝𝑝 if    ∑ 𝑐𝑐𝑖𝑖 < 𝑇𝑇𝑁𝑁

𝑖𝑖=1  (2) 

Note that it is not always socially optimal to provide the irrigation system (right at its cost) if the 
probability of drought is relatively low or the cost of the system is relatively high.3 In fact, 
providing the public good (right at its cost) is the social optimum if and only if expected social 
loss when the system is not built is at least as large as the cost of the system, i.e. 𝑝𝑝𝑁𝑁𝐸𝐸 ≥ 𝑇𝑇. 
Otherwise, it is never optimal to provide the system. 

2.2 Equilibria when providing the public good is the social optimum 

When expected social loss without the irrigation system is at least as large as the cost of building 
the system, i.e. 𝑝𝑝𝑁𝑁𝐸𝐸 ≥ 𝑇𝑇, reaching the threshold and providing the public good is socially 
optimal. There exist both efficient and inefficient Nash Equilibria.4 

Under the efficient Nash Equilibria, the group contributes exactly enough to meet the threshold 
and provide the public good (efficiency). It is efficient because it attains the social optimal 
surplus 𝑁𝑁𝐸𝐸 − 𝑇𝑇 in a sense that any extra contribution above the threshold is not returned and 
essentially wasted, and any contribution below the threshold leads to non-provision and a smaller 
total surplus (1 − 𝑝𝑝)𝑁𝑁𝐸𝐸. Individual contributions differ among this set of Nash Equilibria. In 
addition, no individual contributes more toward the public good than their expected loss when 
the system is not built (individual rationality). Specially, the set of efficient Nash Equilibria 
consists of all contribution vectors {𝑐𝑐𝑖𝑖} that satisfy the following: 

(Efficiency)    ∑ 𝑐𝑐𝑖𝑖 = 𝑇𝑇𝑁𝑁
𝑖𝑖=1  (3) 

(Individual rationality) 0 ≤ 𝑐𝑐𝑖𝑖 ≤ 𝑝𝑝𝐸𝐸 , ∀𝑖𝑖 (4) 

To see (3) and (4) characterize a set of Nash Equilibria, note that no individual has the incentive 
to unilaterally increase her contribution because any extra contribution above the threshold is a 
pure waste or decrease her contribution because it reduces her utility from 𝐸𝐸 − 𝑐𝑐𝑖𝑖 to (1 − 𝑝𝑝)𝐸𝐸. 

Under the inefficient Nash Equilibria, group contribution falls below the threshold and thus the 
public good is not provided (inefficiency). Recall that providing the public good here is the 
social optimum and non-provision is thus inefficient. At the same time, for any individual 𝑖𝑖, 
either she is not able or she is not willing to increase her contribution and provide the public 

                                                 
3 Social optimality occurs when the maximum feasible group joint surplus is attained.  
4 We adopt the constraint names to describe the efficient and inefficient Nash Equilibria in section 3.2 from Croson 
and Marks (2000).  
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good (no deviation). The set of inefficient Nash Equilibria consists of all contribution vectors 
{𝑐𝑐𝑖𝑖}  that satisfy the constraints below: 

(Inefficiency)    ∑ 𝑐𝑐𝑖𝑖 < 𝑇𝑇𝑁𝑁
𝑖𝑖=1  (5) 

(No deviation)   𝑇𝑇 − ∑ 𝑐𝑐𝑖𝑖𝑁𝑁
𝑖𝑖=1 ≥ min(𝐸𝐸 − 𝑐𝑐𝑖𝑖, 𝑝𝑝𝐸𝐸 − 𝑐𝑐𝑖𝑖) = 𝑝𝑝𝐸𝐸 − 𝑐𝑐𝑖𝑖 , ∀𝑖𝑖 (6) 

No individual has a (strict) incentive to contribute less because when group contribution is below 
the threshold, contributions are returned anyways. From constraint (6), we know that no one can 
both feasibly and rationally increase contribution unilaterally to reach the threshold. It follows 
that (5) and (6) describe a set of Nash Equilibria. 

Any contribution vectors {𝑐𝑐𝑖𝑖}  that involve a group contribution above the threshold, i.e. 
∑ 𝑐𝑐𝑖𝑖 > 𝑇𝑇𝑁𝑁
𝑖𝑖=1 , can never be Nash Equilibria because some individual can unilaterally decrease her 

contribution and gain more utility without changing group provision of the public good. 

2.3 Equilibria when not providing the public good is the social optimum 

When expected social loss without the irrigation system is less than the cost of building the 
system, i.e. 𝑝𝑝𝑁𝑁𝐸𝐸 < 𝑇𝑇, it is not worthwhile to provide the public good and not reaching the 
threshold is socially optimal. Only efficient Nash Equilibria exist in this case. Under these 
Equilibria, total group contribution is less than the threshold so the public good is not provided 
(efficiency) while no one can both feasibly and rationally increase contribution unilaterally to 
reach the threshold (no deviation). Contribution vectors {𝑐𝑐𝑖𝑖} satisfying the two constrains below 
characterize these efficient Nash Equilibria: 

(Efficiency)    ∑ 𝑐𝑐𝑖𝑖 < 𝑇𝑇𝑁𝑁
𝑖𝑖=1  (7) 

(No deviation)   𝑇𝑇 − ∑ 𝑐𝑐𝑖𝑖𝑁𝑁
𝑖𝑖=1 ≥ min(𝐸𝐸 − 𝑐𝑐𝑖𝑖, 𝑝𝑝𝐸𝐸 − 𝑐𝑐𝑖𝑖) = 𝑝𝑝𝐸𝐸 − 𝑐𝑐𝑖𝑖 , ∀𝑖𝑖 (8) 

(7) and (8) constitute a set a Nash Equilibria in the same sense as (5) and (6). The only difference 
is that these Equilibria are efficient here because they attain the social optimal surplus of 
(1 − 𝑝𝑝)𝑁𝑁𝐸𝐸, compared with a social surplus of 𝑁𝑁𝐸𝐸 − 𝑇𝑇 (or less) if the group makes more 
contribution to achieve (or exceed) the threshold. 

No Nash Equilibria exist for ∑ 𝑐𝑐𝑖𝑖 ≥ 𝑇𝑇𝑁𝑁
𝑖𝑖=1  because any individual 𝑖𝑖 rationally contributes to 

achieve the threshold up to the expected loss under non-provision, i.e. 𝑐𝑐𝑖𝑖 ≤ 𝑝𝑝𝐸𝐸, which makes a 
total group contribution of ∑ 𝑐𝑐𝑖𝑖 < 𝑝𝑝𝑁𝑁𝐸𝐸𝑁𝑁

𝑖𝑖=1 . If follows from 𝑝𝑝𝑁𝑁𝐸𝐸 < 𝑇𝑇 that ∑ 𝑐𝑐𝑖𝑖 < 𝑇𝑇𝑁𝑁
𝑖𝑖=1 , which 

means ∑ 𝑐𝑐𝑖𝑖 ≥ 𝑇𝑇𝑁𝑁
𝑖𝑖=1  can never happen under rationality. 

 

3 Experimental design and hypotheses 

3.1 Design 

Each session consists of two games and a survey. To make it easier for future adoption in the 
field, we design the two games under paper and pencil method.  
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Game 1 is the threshold public goods game. We frame the game as a group of farmers in a 
village funding for an irrigation renovation project that protects them from possible income loss 
caused by drought. Each group consists of 𝑁𝑁 = 6 players and each player begins with an 
endowment of 𝐸𝐸 = 20 tokens. The irrigation project requires a minimum funding of 𝑇𝑇 = 60 
tokens.  

We use a 2-by-3 within subject design, with two levels of risk of drought and three types of 
price-based interventions which construct a total of six scenarios (or treatments, which we 
explain in the next section). Each group plays all six scenarios and three consecutive rounds for 
each scenario. The groups stay the same throughout the session so interaction only occurs within 
each group. Participants are paid for six randomly chosen rounds, one from each scenario, with a 
conversion rate of 1 token = $0.20. They are aware of the above rules for payment at the 
beginning but do not see which rounds are chosen for payment until the end of the experiment. 

At the beginning of each round, players receive a new decision sheet and start with an 
endowment of 20 tokens. They are told or reminded of the current scenario and then decide to 
invest how much of their endowment to their group irrigation renovation fund simultaneously 
and privately.5 After all players submit their decision sheets, an experimenter draws one ball in 
front of all participants from a bingo cage, a randomization device, to determine whether drought 
occurs or not. The composition of the balls depends on the level of risk and is observable from 
outside. Experimenters then calculate each player’s earnings according to her investment, 
whether her group investment reaches the threshold and whether drought occurs. Specifically, if 
the group contribution reaches or exceeds the threshold, meaning the group successfully 
renovates the irrigation system, each player in the group earns the full amount after their 
investment, i.e. 20-investment, regardless of whether drought occurs. If the group investment 
falls below the threshold, the irrigation system is not renovated and players in the group either 
earn 0 tokens if drought occurs, or 20 tokens if drought does not occur. Players see total 
investment of their group, whether irrigation channels in their village are renovated, whether 
drought occurs and their earnings for the round on the updated decision sheet. After that, a new 
round begins and each player receives a new decision sheet. We emphasize in the instructions 
that tokens cannot be carried over across rounds and they are free to change their decisions from 
last round. 

Game 2 is an Eckel-Grossman (2002) ordered lottery selection risk preferences elicitation. We 
choose this risk task because it requires a relatively low cognitive load. Participants need to 
choose one from seven 50-50 lotteries that they would like to play. In each lottery, there is a 50% 
chance of receiving a low payoff and a 50% chance of receiving a high payoff. Following 
Cardenas and Carpenter (2013), we arrange lotteries in a circle to avoid any obvious ranking 
(Fig. 1). Table 1 presents the seven lotteries and their corresponding expected return, standard 
deviation and range of CRRA coefficient. Note that as one moves clockwise from the top right 

                                                 
5 To eliminate potential warm glow effect (warm feelings from being charitable as in Andreoni, 1990), we use the 
word “invest” rather than “contribute” in the experiment. 
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corner (choice #1: lottery 33|33, or safe choice) to the bottom left corner (choice #5: lottery 
9|73), the lotteries increase in both expected return and risk, measured in terms of standard 
deviation. Risk averse participants choose among these five with the most risk averse ones 
selecting #1, and the least risk averse or risk neutral ones selecting #5 for the higher expected 
return. Choice #6 (lottery 6|76) has the same expected return as choice #5, but a higher risk. 
Choice #7 (lottery 2|78) is riskier than #6, but with a smaller expected return.6 Risk seeking 
participants choose between #6 and #7 with the more risk seeking ones willing to sacrifice some 
expected return for even higher risk and thus choosing #7. 

 

Fig.1 Lotteries presented to participants in Game 2 (in points) 

Table 1 Risk elicitation in Game 2 
Choice 

(50/50 Lottery) 
Low 

payoff 
High 

payoff 
Expected 

return 
Standard 
deviation 

Implied CRRA 
range 

Risk 
attitude 

#1 33 33 33 0 r > 2.20 

Risk averse #2 27 43 35 8 0.74 < r < 2.20 
#3 21 53 37 16 0.43 < r < 0.74 
#4 15 63 39 24 0.29 < r < 0.43 
#5 9 73 41 32 0 < r < 0.29 Risk neural 
#6 6 76 41 35 -0.23 < r < 0 Risk loving #7 2 78 40 38 r < -0.23 

                                                 
6 While the original Eckel-Grossman (2002) design cannot differentiate between different degrees of risk-seeking 
behavior, we add choice #7 so that more risk seeking participants can be distinguished from those who are slightly 
risk seeking. 
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An experimenter plays in the participant’s presence her chosen lottery at the time of payment. 
Players receive $0.40 for each point they earn in Game 2. Again, they know the rule of payment 
before they make their choice but do not know their lottery outcome until the end of the 
experiment. 

3.2 Treatments 

We run six scenarios or treatments in total, which differ in terms of the level of risk and types of 
price-based intervention (Table 2). 

Table 2 Scenarios and parameters 
Scenarios / Treatments Subsidy scheme 

No Subsidy 
 

(ET = 60) 

One-to-one 
Matching 
(ET = 30) 

Lump-sum 
 

(ET = 30) 
Risk of 
drought (loss) 

High (p = 0.75) HNS H121 HLS 
Low  (p = 0.25) LNS L121 LLS 

Notes: ET stands for effective threshold, defined as the effective amount required as contribution from 
individuals in the group to renovate the irrigation system.  

The risk of loss can be either high (H) or low (L), where drought occurs with probability 𝑝𝑝 =
0.75 or 𝑝𝑝 = 0.25 respectively. Recall that an experimenter draws one ball from the bingo cage in 
participants’ presence in each round to determine whether drought occurs. There are eight balls 
in the cage, either six red and two white (high risk) or six white and two red (low risk). If the 
experimenter draws a red ball, drought occurs. If she draws a white ball, drought does not occur. 
Before each draw, the experimenter makes sure that there are eight balls in the cage and that the 
composition is right corresponding to the probability of drought. Each draw applies to all groups 
in the session. 

We explore one particular type of price-based intervention: government subsidy. The three 
possible subsidy schemes are no subsidy (NS), one-to-one matching (121) and lump-sum (LS). 
Participants are told earlier in the instructions that the village government does not have 
sufficient funding for the renovation of irrigation channels, but it has established an irrigation 
renovation fund (IRF), to which farmers can voluntarily invest money. The no subsidy scheme 
follows the protocol described above, so the group contribution needs to reach the threshold of 
𝑇𝑇 = 60 tokens to renovate the system. Under both one-to-one matching and lump-sum scheme, 
the village government has funding for half of the cost needed, i.e. 0.5𝑇𝑇 = 30 tokens, and 
subsidize other’s investments. The difference is that under one-to-one matching scheme, every 
token a player invests in the IRF will be matched with one token from the government, up to the 
government’s budget of 30 tokens, while under lump-sum scheme, the government provides half 
of the total funding required (30 tokens) to the irrigation renovation fund (IRF) upfront. Note that 
both one-to-one matching and lump-sum scheme essentially reduce the threshold by half to 0.5𝑇𝑇, 
which we denote as effective threshold (ET), and the two only differs in the way it is achieved. 
All else are the same as before. 
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3.3 Procedure and participants 

Each session proceeds as follows. Upon arrival, all participants are randomly seated to the 
computer terminals. An experimenter announces there will be two games and a survey and then 
distributes instructions for Game 1. Instructions for Game 2 are not distributed until participants 
finish Game 1. Recall that in Game 1, every group plays all six scenarios, three of which have a 
high risk of loss and another three have a low risk of loss. We divide the six scenarios into two 
blocks (High risk block and Low risk block) according to its level of risk. We randomize the 
order of blocks across sessions, and within each block, we randomize the order of the three 
scenarios except that the first scenario in the first block is always the one with no subsidy. We do 
this to minimize the order effect, while at the same time switch from one level of risk to another 
only once to avoid confusion, and make sure that participants start from an easier scenario. The 
Game 1 instructions distributed at the beginning thus only contain information under no subsidy, 
and participants receive two additional instructions about one-on-one matching and lump-sum 
subsidy schemes before they enter the corresponding scenario for the first time in a session. We 
print decision sheets of different scenarios on different colored papers as well as reemphasize the 
scenario parameters before each new round to eliminate confusion. 

We read aloud all instructions for each game. We also show the participants several figures of 
irrigation channels in a village to give them a concrete idea about the system and walk them 
through a practice round before they start the paid part of Game 1. After they finish Game 2, we 
direct them to a survey on the computer screen including demographic questions and thoughts 
regarding the experiment. Once they finish the survey, we pay them privately in cash. Their 
payment is the sum of earnings from Game 1 and Game 2 (converted to US$), show-up fee and 
an additional amount for the survey. 

We conducted 9 sessions with 12 participants (i.e. two independent groups) per session at the 
ICES lab at George Mason University. All participants are Mason students and no one 
participated in more than one session. Including a $5 show-up fee and a $2 for finishing the 
survey, participants earned an average of $35.6 for a 2.5-hour session. We ran Game 1 and Game 
2 using paper and pencil method and collected survey responses in Qualtrics. Table 3 displays 
summary statistics. Instructions, decision sheets and survey questions are available in the Online 
Appendices. 
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Table 3 Summary statistics 
  Number of obs. Mean S.D. Min Max 
Participants 108     
 Male 58 (53.70%)     
 Female 50 (46.30%)     
Age 108 21.44 3.18 18 35 
Year of college 108     
 Undergraduate 81 (75%)     
 Graduate 24 (22.22%)     
 Other 3  (2.78%)     
Willingness to take risks 108 2.19 0.90 1 5 
Trust in others 108 3.19 1.16 1 5 
Risk attitude in Game 2 108 3.14 2.06 1 7 
 Lottery #1 27 (25.00%)     
 Lottery #2 29 (26.85%)     
 Lottery #3 14 (12.96%)     
 Lottery #4 13 (12.04%)     
 Lottery #5 5  (4.63%)     
 Lottery #6 5  (4.63%)     
 Lottery #7 15 (13.89%)     
Game 1 round payoff (tokens) 1,944 12.50 7.71 0 20 
Game 2 payoff ($) 108 13.97 8.28 0.8 31.2 
Total payment ($)  108 35.58 8.77 17 56 

Notes: Willingness to take risks is a 1-5 integer with bigger number meaning less willing to take risks; 
Trust in others is a 1-5 integer with bigger number meaning trusting less in others; Risk attitude in Game 
2 is the lottery choice the individual makes in Game 2 and is a 1-7 integer with bigger number meaning 
more risk seeking; Total payment includes the $5 show-up fee and $2 survey bonus. 

3.4 Hypotheses 

We are particularly interested in exploring whether social optimum is achieved and roles of 
different types of subsidies.  

Table 4 presents social optimal predictions of irrigation system provision under the parameters of 
our design. Note that under risk neutrality, providing or not providing the system yield same 
social surplus under L121 and LLS. Even a slight degree of risk aversion, which is usually the 
case, will make providing the system and earning a sure income more socially desirable 
compared to a risky outcome. For LNS, the cost of building an irrigation system is much higher 
than the social expected loss with no protection under risk neutrality. However, if people are risk 
averse enough that even a small risk of loss results in a drastic reduction in utility, it is still 
possible that providing the public good turns into social optimum. On the other hand, risk 
aversion does not change social optimum in scenarios with high risk because it makes not 
providing the public good even less attractive. We first hypothesize that social efficiency is 
achieved in each scenario. 
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Table 4 Predictions of socially optimal irrigation system provision under risk neutrality (risk 
aversion) 

Social optimum No subsidy 
(NS) 

One-to-one m. 
(121) 

Lump-sum 
(LS) 

Risk of loss 
(H) 

Provide 
(Provide) 

Provide 
(Provide) 

Provide 
(Provide) 

Risk of loss 
(L) 

Not provide 
(Provide if risk averse enough) 

Indifferent 
(Provide) 

Indifferent 
(Provide) 

Notes: Predictions under risk aversion are in parentheses. 

Hypothesis 1 (Social Efficiency): Group investment reaches threshold and public good is 
provided when it is socially optimal to do so. 

Recall that the one-to-one matching and lump-sum scheme only differs in the way subsidy is 
provided, while both essentially reduce the effective threshold by half. We thus hypothesize that 
these two subsidy schemes are equally effective. If players do respond more to one scheme, there 
must be some behavioral reasons. 

Hypothesis 2 (Subsidy Effectiveness): The two subsidy schemes (121 and LS) have same effect 
on investment and success rate. 

 

4 Laboratory results 

4.1 Aggregate outcomes  

4.1.1 Group investment 

Investments of each group are depicted in Fig. 2. Overall, group investment is higher under high 
risk of loss compared with low risk of loss. In the LNS scenario, most groups are not risk averse 
enough to provide the public good and group strategies are very heterogeneous. In all other 
scenarios, group investments cluster around the effective threshold. 
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Fig. 2 Group investments by each group. Notes: Thick red lines denote the effective threshold in 
each scenario. 

Fig.3 shows the average group investment in each round of each scenario. In terms of social 
efficiency, average group investment is below the effective threshold under either high or low 
risk when there is no subsidy. Subsidies successfully bring the average group investment above 
the effective threshold under high risk but fail to do so under low risk. 

Hypotheses tests (t-tests, we report two-sided p-values below) comparing the observed group 
investments (Table 5) and the corresponding effective threshold in each scenario confirm the 
above trends. Under no subsidy, both group investments under high risk and low risk are 
significantly lower than the effective threshold (HNS: 56.39 vs. ET = 60, p < 0.001 in favor of 
mean < 60; LNS: 37.69 vs. ET = 60, p < 0.001 in favor of mean < 60). When there is subsidy 
under high risk, group investments reach the effective threshold under both types of subsidy 
(H121:33.48 vs. ET = 30, p < 0.001 in favor of mean > 30; HLS: 31.94 vs. ET = 30, p = 0.005 in 
favor of mean > 30). Under low risk, even with subsidies, group investments are still 
significantly below the effective threshold (L121: 26.31 vs. ET = 30, p < 0.001 in favor of mean 
< 30; LLS: 26.39 vs. ET = 30, p < 0.001 in favor of mean < 30).  

Hypothesis 1 is supported only when subsidies are provided under high risk (H121 and HLS). 
Otherwise, group investments do not reach the effective threshold even if it is socially optimal to 
do so. 
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Fig. 3 Average group investment by round and scenario. Notes: Solid and dashed thick red lines 
denote the effective thresholds with no subsidy and with subsidy respectively. 

Table 5 Average group investment by scenario 
 No subsidy 

(NS) 
One-to-one m. 

(121) 
Lump-sum 

(LS) 
Comparison between 
columns 

Risk of loss 
(H) 

56.39 
(0.78) 

33.48 
(0.66) 

31.94 
(0.67) 

HNS vs. H121: p < 0.001 
HNS vs. HLS: p < 0.001 
H121 vs. HLS: p = 0.27 

Risk of loss 
(L) 

37.69 
(1.72) 

26.31 
(0.88) 

26.39 
(0.76) 

LNS vs. L121: p = 0.001 
LNS vs. LLS: p = 0.001 
L121 vs. LLS: p = 0.86 

Comparison 
between rows 

HNS vs. LNS: 
p < 0.001 

H121 vs. L121: 
p < 0.001 

HLS vs. LLS: 
p < 0.001 

 

Notes: Group investment is the sum of investments from all players in a group. We pool groups and 
rounds when calculating the average group investment. Standard errors in parentheses. P-values are 
calculated using two-sided Wilcoxon matched-pairs signed-ranks tests. 

Fig.3 also shows that average group investment is slightly higher under H121 than HLS. 
Participants do not respond to subsidy schemes under low risk. We compare group investments 
under the two types of subsidies and find no significant difference no matter whether the risk of 
loss is high or low (see Table 5, H121 vs. HLS: p = 0.27, L121 vs. LLS: p = 0.86, Wilcoxon 
signed-ranks tests). We cannot reject Hypothesis 2 that group investments are the same under 
one-to-one matching and lump-sum subsidy. 

4.1.2 Success rates 

Now we turn to what proportion of times the irrigation project is successfully undertaken. Fig. 4 
shows success rates along with 95% confidence intervals in each scenario. Recall that the 
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theoretical prediction of social optimum is to always provide under high risk, while provision 
under low risk depends on risk preferences. We can see from the means and 95% CIs in Fig. 4 
that success rates are significantly lower than the social optimum (100%) under high risk. Even if 
players are not risk averse enough to provide the public good in LNS which leads to a socially 
optimal provision rate of 0%, the success rates under L121 and LLS are far from the social 
optimum of 100% given they are on average risk averse (see the average lottery choice in Table 
3).  

 
Fig. 4 Rates of successful provision in each scenario 

Subsidies significantly increase success rates under either high or low risk. Table 6 reports 
success rates in each scenario and compares across treatments. When subsidies are present, 
success rates increase substantially and significantly (p < 0.001 for HNS vs. H121, HNS vs. 
HLS, LNS vs. L121, LNS vs. LLS, proportions tests), but again, the public goods are still under-
provided. Results on success rates do not support Hypothesis 1 in any scenario. 

Success rates under one-to-one matching are at least as high as those under lump-sum subsidy. 
When risk of loss is high, success rate under the former is 10 percentage points higher than under 
the latter, although the difference is not significant (H121 vs. HLS, p = 0.25, proportions test). 
The two types of subsidies are equally effective under low risk, which is not surprising because 
success rates under L121 and LLS are exactly the same in our current sample (L121 vs. LLS: p = 
1.00). Our results on success rates support Hypothesis 2. 

 

  

0

.2

.4

.6

.8

1
R

at
e 

of
 S

uc
ce

ss
fu

l P
ro

vi
si

on

HNS H121 HLS LNS L121 LLS
Scenario

High risk Low risk
95% CI



16 

 

Table 6 Success rates in each scenario 
 No subsidy 

(NS) 
One-to-one m. 

(121) 
Lump-sum 

(LS) 
Comparison between 
columns 

Risk of loss 
(H) 

38.9% 
(0.07) 

81.5% 
(0.05) 

72.2% 
(0.06) 

HNS vs. H121: p < 0.001 
HNS vs. HLS: p < 0.001 
H121 vs. HLS: p = 0.25 

Risk of loss 
(L) 

3.7% 
(0.03) 

33.3% 
(0.06) 

33.3% 
(0.06) 

LNS vs. L121: p < 0.001 
LNS vs. LLS: p < 0.001 
L121 vs. LLS: p = 1.00 

Comparison 
between rows 

HNS vs. LNS: 
p < 0.001 

H121 vs. L121: 
p < 0.001 

HLS vs. LLS: 
p < 0.001 

 

Notes: Success rate is the proportion of times groups successfully provide the irrigation system in each 
scenario. We pool groups and rounds when calculating the success rates. Standard errors in parentheses. 
P-values are calculated using two-sided proportions tests. 

4.2 Individual investment 

The aggregate analyses above ignore any individual-specific effects. Next we explore how 
individuals respond to risk of loss and subsidy schemes.  

Table 7 shows the OLS regression results on individual investment decisions. Model (1) shows 
that individual players invest about 2 tokens significantly more under high risk than low risk. 
When there is a subsidy, players significantly decrease their investments by about 3 tokens 
compared with scenarios with no subsidy. The two subsidy schemes 121 and LS are not 
significantly different (F(1, 17) = 0.61, Prob > F = 0.45). 

Models (2) - (5) compare among the six scenarios directly under different controls. Since the 
coefficients of the scenario dummies do not change among the four models, we focus on model 
(5) with the most number of control variables. A lower risk of loss significantly decreases 
individual investments, especially when no subsidy is provided (a 3-token decrease from HNS to 
LNS). When there is subsidy, individual investment is only one token lower in low risk scenarios 
(H121 vs. L121, F(1, 17) = 27.87, Prob > F = 0.0001; HLS vs. LLS, F(1, 17) = 23.62, Prob > F = 
0.0001). Subsidies show a crowding-out effect on individual investment. Under high risk of loss, 
subsidies lead to a significant 4-token decrease in individual investment and the subsidy scheme 
does not matter (H121 vs. HLS, F(1, 17) = 1.67, Prob > F = 0.21). Under low risk of loss, this 
effect is smaller (a 2-token decrease) but still significant (LNS vs. L121, F(1, 17) = 24.85, Prob > 
F = 0.0001; LNS vs. LLS, F(1, 17) = 22.41, Prob > F = 0.0002). Again, the two subsidy schemes 
show no significant difference, especially under low risk (H121 vs. HLS, F(1, 17) = 1.67, Prob > 
F = 0.2132; L121 vs. LLS, F(1, 17) = 0.00, Prob > F = 0.9486). 

Models (3), (4) and (5) further show that although individual risk preferences, under two 
measurements, have a significant effect on investments that more risk averse players tend to 
invest more to the group account, the absolute magnitudes are small (less than 1 token). Females 
invest almost one token significantly more than males, while trust in others and age explains 
little of the investment. 
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Table 7 Risk of loss and subsidy schemes on individual investment 
Dependent variable: Individual Investment 

 (1) (2) (3) (4) (5) 
High risk of drought 1.746***     
 (0.247)     
One-to-one matching -2.856***     
 (0.247)     
Lump-sum -2.978***     
 (0.212)     
H121  -3.818*** -3.818*** -3.818*** -3.818*** 
  (0.216) (0.216) (0.216) (0.216) 
HLS  -4.074*** -4.074*** -4.074*** -4.074*** 
  (0.172) (0.172) (0.172) (0.172) 
LNS  -3.117*** -3.117*** -3.117*** -3.117*** 
  (0.473) (0.474) (0.474) (0.474) 
L121  -5.012*** -5.012*** -5.012*** -5.012*** 
  (0.329) (0.329) (0.329) (0.329) 
LLS  -5.000*** -5.000*** -5.000*** -5.000*** 
  (0.197) (0.197) (0.197) (0.197) 
Risk attitude in Game 2   -0.147*   
   (0.0752)   
Willingness to take risks    0.594*** 0.427* 
    (0.204) (0.227) 
Trust in others    -0.212 -0.135 
    (0.176) (0.168) 
Female     0.818** 
     (0.310) 
Age     0.0895 
     (0.0561) 
Year of College dummies no no no no yes 
Constant 6.967*** 9.398*** 9.858*** 8.777*** 6.599*** 
 (0.354) (0.178) (0.287) (0.735) (1.199) 
No. of observations 1944 1944 1944 1944 1944 
R2 0.216 0.235 0.242 0.259 0.273 

 Notes: OLS regression with clustering at the group level. Standard errors in parentheses. Significant 
levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01. Dependent variable Individual Investment is 
the number of tokens (0-20 inclusive) invested by an individual player to the group account in each round 
of each scenario. Independent variables High risk of drought equals 1 if the scenario involves 75% 
probability of loss and 0 if the scenario involves 25% probability of loss; One-to-one matching equals 1 if 
a one-to-one matching subsidy is provided and 0 otherwise; Lump-sum equals1 if a lump-sum subsidy is 
provided and 0 otherwise; H121, HLS, LNS, L121 and LLS are dummy variables for the corresponding 
scenarios; Risk attitude in Game 2 is the lottery choice the individual makes in Game 2 and is a 1-7 
integer with bigger number meaning more risk seeking; Willingness to take risks is a 1-5 integer with 
bigger number meaning less willing to take risks; Trust in others is a 1-5 integer with bigger number 
meaning trusting less in others; Female equals 1 if the individual is a female and 0 otherwise; Age is the 
age of the individual in years; Year of College are dummies indicating the school year of the individual. 
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5 Conclusion 

We design an experiment to explore how individuals contribute to a group irrigation system that 
prevents the whole group from possible loss caused by drought and how subsidies affect the 
contribution decisions. The collective-risk dilemma is framed as a threshold public goods game 
under either high or low risk of loss and at the same time the local government provides 
subsidies under either a one-to-one matching scheme or a lump-sum grant scheme in some 
treatments. The game has clear equilibrium and social optimum predictions, the latter of which 
are our focus. 

We collect data in the laboratory and find that the public good is underprovided compared with 
the social optimum even when subsidies are present. More specifically, when the risk of loss is 
high which indicates the social optimum is to provide the system under risk aversion and risk 
neutrality, the group investments and success rates are far below the optimum when there is no 
subsidy; subsidies significantly increase the likelihood the irrigation project is undertaken with 
average group investments above the effective threshold, but the realized success rates are still 
significantly lower than 100%. When the risk of loss is low, slight risk aversion predicts full 
provision for treatments with subsidy, while the social optimum for the treatment without 
subsidy is towards non-provision if people are not hyper risk averse. Results show that 
participants are not risk averse enough to provide the public good when there is no subsidy under 
low risk, which can be socially efficient. Subsidies significantly increase the success rates of 
provision, but they perform worse under low risk than high risk because average group 
investments are still below the effective threshold and the realized success rates are significantly 
lower than those under high risk. 

Individual decision data show that a lower risk of loss significantly decreases individual 
investments but subsidies mitigate this effect. Subsidies significantly crowd out individual 
investments and the crowding-out effect is greater under high risk. Nevertheless, subsidies still 
increase the success rates more under high risk compared with low risk. 

For a same subsidy budget, the one-to-one matching scheme works at least as good as the lump-
sum scheme. When the risk of loss is high, groups invest more on average and have a higher 
success rate under a one-to-one matching subsidy than a lump-sum subsidy, though the 
differences are not significant. Neither aggregate group outcomes nor individual decisions differ 
under the two schemes when the risk of loss is low. 

The funding for an irrigation system problem in our setting, like other standard threshold public 
goods games, suffer from two challenges: free riding and coordination. When the social optimum 
is to provide the public good, individuals may want to keep their contributions at the minimum 
possible amount to hit the threshold. While we derive our social optimum assuming 
homogeneous risk preferences, individuals’ actual risk attitudes differ very much from each 
other, which makes it even harder to coordinate. A possibility of loss amplifies the role of risk 
aversion and loss aversion, because some individuals may want to take advantage of large 
contributors who are more risk averse. Government subsidies facilitate provision by lowering the 
cost to provide the public good but do not address the risk-intensified coordination problem. In 
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this sense, a further exploration of behavioral interventions that directly speak to coordination 
under risk on top of government subsidies can be profitable. Finally, it is also worthwhile to do a 
field investigation on the irrigation provision problem with real farmers facing possible drought. 
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